
Structural Testing
Software Engineering

Andreas Zeller • Saarland University

From Pressman, “Software Engineering – a practitioner’s approach”,
Chapter 14
and Pezze + Young, “Software Testing and Analysis”, Chapters 12-13

Testing Tactics

• Tests based on spec

• Test covers as much 
specified behavior  
as possible

• Tests based on code

• Test covers as much
implemented behavior 
as possible

Functional  
“black box”

Structural  
“white box”

In contrast to functional tests (discussed the last time), structural tests
are based on the code structure

Why Structural?

• If a part of the program is never executed, a
defect may loom in that part  
A “part” can be a statement, function, transition, condition…

• Attractive because automated

Functional  
“black box”

Structural  
“white box”

Structural tests are automated – and can be much more fine-grained
than functional tests.

Why Structural?

• Complements functional tests 
Run functional tests first, then measure what is missing

• Can cover low-level details missed in high-
level specification

Functional  
“black box”

Structural  
“white box”

Typically, both techniques are used.

A Challenge
class Roots {  
 // Solve ax2 + bx + c = 0  
 public roots(double a, double b, double c)  
 { … }

 // Result: values for x  
 double root_one, root_two;  
}

• Which values for a, b, c should we test?  
assuming a, b, c, were 32-bit integers, we’d have (232)3 ≈ 1028 legal inputs 
with 1.000.000.000.000 tests/s, we would still require 2.5 billion years

Recall this example from last lecture.

The Code
 // Solve ax2 + bx + c = 0  
 public roots(double a, double b, double c)  
 {  
 double q = b * b - 4 * a * c;  
 if (q > 0 && a ≠ 0) {  
 // code for handling two roots  
 }

 else if (q == 0) {  
 // code for handling one root  
 }

 else {  
 // code for handling no roots  
 }  
 }

Test this case

and this

and this!

If we know the code (“white box”) and thus the structure, we can design
test cases accordingly

Test this case

and this

and this!

The Test Cases
 // Solve ax2 + bx + c = 0  
 public roots(double a, double b, double c)  
 {  
 double q = b * b - 4 * a * c;  
 if (q > 0 && a ≠ 0) {  
 // code for handling two roots  
 }

 else if (q == 0) {  
 // code for handling one root  
 }

 else {  
 // code for handling no roots  
 }  
 }

(a, b, c) = (3, 4, 1)

(a, b, c) = (0, 0, 1)

(a, b, c) = (3, 2, 1)

Finding appropriate input values is a challenge in itself which may
require external theory – but in this case, the external theory is just
maths.

A Defect
 // Solve ax2 + bx + c = 0  
 public roots(double a, double b, double c)  
 {  
 double q = b * b - 4 * a * c;  
 if (q > 0 && a ≠ 0) {  
 // code for handling two roots  
 }

 else if (q == 0) {  
 x = (-b) / (2 * a);  
 }

 else {  
 // code for handling no roots  
 }  
 }

↯
code must handle a = 0

(a, b, c) = (0, 0, 1)

The test case that executes the q = 0 branch reveals a defect – the
case a = 0

Expressing Structure
 // Solve ax2 + bx + c = 0  
 public roots(double a, double b, double c)  
 {  
 double q = b * b - 4 * a * c;  
 if (q > 0 && a ≠ 0) {  
 // code for handling two roots  
 }

 else if (q == 0) {  
 x = (-b) / (2 * a);  
 }

 else {  
 // code for handling no roots  
 }  
 }

What is relevant in her is the program structure – the failure occurs only
if a specific condition is true and a specific branch is taken.

Control Flow Graph
public roots(double a, double b, double c)

double q = b * b - 4 * a * c;

q > 0 && a != 0

// code for two roots

q == 0

// code for one root

// code for no roots

return

• A control flow graph expresses
paths of program execution

• Nodes are basic blocks –
sequences of statements with
one entry and one exit point

• Edges represent control flow –
the possibility that the
program execution proceeds
from the end of one basic
block to the beginning of
another

To express structure, we turn the program into a control flow graph,
where statements are represented as nodes, and edges show the
possible control flow between statements.

Structural Testing
public roots(double a, double b, double c)

double q = b * b - 4 * a * c;

q > 0 && a != 0

// code for two roots

q == 0

// code for one root

// code for no roots

return

• The CFG can serve as an
adequacy criterion for test
cases

• The more parts are covered
(executed), the higher the
chance of a test to uncover a
defect

• “parts” can be: nodes, edges,
paths, conditions…

To talk about structure, we turn the program into a control flow graph,
where statements are represented as nodes, and edges show the
possible control flow between statements.

Control Flow Patterns
while (COND)

BODY

if (COND)

THEN-BLOCK ELSE-BLOCK

while (COND)

BODY

do

COND

BODY

for

INIT

INCR

while (COND)

 BODY;

if (COND)

 THEN-BLOCK;

else

 ELSE-BLOCK;

do {

 BODY

} while (COND);

for (INIT; COND; INCR)

 BODY;

Every part of the program induces its own patterns in the CFG.

/**  
 * @title cgi_decode  
 * @desc  
 * Translate a string from the CGI encoding to plain ascii text  
 * ’+’ becomes space, %xx becomes byte with hex value xx,  
 * other alphanumeric characters map to themselves  
 *  
 * returns 0 for success, positive for erroneous input  
 * 1 = bad hexadecimal digit  
 */

int cgi_decode(char *encoded, char *decoded)
{  
 char *eptr = encoded;  
 char *dptr = decoded;  
 int ok = 0;

cgi_decode
/**  
 * @title cgi_decode  
 * @desc  
 * Translate a string from the CGI encoding to plain ascii text  
 * ’+’ becomes space, %xx becomes byte with hex value xx,  
 * other alphanumeric characters map to themselves  
 *  
 * returns 0 for success, positive for erroneous input  
 * 1 = bad hexadecimal digit  
 */

int cgi_decode(char *encoded, char *decoded)
{  
 char *eptr = encoded;  
 char *dptr = decoded;  
 int ok = 0;

A

Here’s an ongoing example. The function cgi_decode translates a
CGI-encoded string (i.e., from a Web form) to a plain ASCII string,
reversing the encoding applied by the common gateway interface (CGI)
on common Web servers.
(from Pezze + Young, “Software Testing and Analysis”, Chapter 12)

 while (*eptr) /* loop to end of string (‘\0’ character) */  
 {  
 char c;  
 c = *eptr;  
 if (c == ’+’) { /* ‘+’ maps to blank */  
 *dptr = ’ ’;
 } else if (c == ’%’) { /* ’%xx’ is hex for char xx */  
 int digit_high = Hex_Values[*(++eptr)];  
 int digit_low = Hex_Values[*(++eptr)];
 if (digit_high == -1 || digit_low == -1)  
 ok = 1; /* Bad return code */
 else  
 *dptr = 16 * digit_high + digit_low;
 } else { /* All other characters map to themselves */  
 *dptr = *eptr;  
 }
 ++dptr; ++eptr;  
 }

 dptr = ‘\0’; / Null terminator for string */  
 return ok;  
}

B

C

D
E

G

F

H

I

L

M

 while (*eptr) /* loop to end of string (‘\0’ character) */  
 {  
 char c;  
 c = *eptr;  
 if (c == ’+’) { /* ‘+’ maps to blank */  
 *dptr = ’ ’;
 } else if (c == ’%’) { /* ’%xx’ is hex for char xx */  
 int digit_high = Hex_Values[*(++eptr)];  
 int digit_low = Hex_Values[*(++eptr)];
 if (digit_high == -1 || digit_low == -1)  
 ok = 1; /* Bad return code */
 else  
 *dptr = 16 * digit_high + digit_low;
 } else { /* All other characters map to themselves */  
 *dptr = *eptr;  
 }
 ++dptr; ++eptr;  
 }

 dptr = ‘\0’; / Null terminator for string */  
 return ok;  
}

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

This is what cgi_decode looks as a CFG.
(from Pezze + Young, “Software Testing and Analysis”, Chapter 12)

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

While the program is executed, one statement (or basic block) after the
other is covered – i.e., executed at least once – but not all of them.
Here, the input is “test”; checkmarks indicate executed blocks.

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

We’d like to test every statement, so we come up with more test cases.

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

We’d like to test every statement, so we come up with more test cases.

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

“%g”

✔

This is an interesting boundary test case, as it may cause non-
deterministic behavior. Can you see why?

Test Adequacy Criteria

• How do we know a test suite is “good enough”?

• A test adequacy criterion is a predicate that is
true or false for a pair ⟨program, test suite⟩

• Usually expressed in form of a rule –  
e.g., “all statements must be covered”

Statement Testing

• Adequacy criterion: each statement 
(or node in the CFG) must be executed at
least once

• Rationale: a defect in a statement can only
be revealed by executing the defect

• Coverage: # executed statements 
 # statements

(from Pezze + Young, “Software Testing and
Analysis”, Chapter 12)

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

0

25

50

75

100

Coverage

63

The initial coverage is 7/11 blocks = 63%. We could also count the
statements instead (here: 14/20 = 70%), but conceptually, this makes
no difference.

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

0

25

50

75

100

Coverage

72

and the coverage increases with each additionally executed
statement…

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

0

25

50

75

100

Coverage

91

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

“%g”

✔

0

25

50

75

100

Coverage

100

… until we reach 100% block coverage (which is 100% statement
coverage, too).

Computing Coverage

• Coverage is computed automatically while
the program executes

• Requires instrumentation at compile time  
With GCC, for instance, use options -ftest-coverage -fprofile-arcs

• After execution, coverage tool assesses and
summarizes results 
With GCC, use “gcov source-file” to obtain readable .gcov file

For Java, use jcoverage or like tools.

Demo

This is the output of the GCOV coverage tool for cgi_decode. Each
statement (each line) is annotated with the number of executions so far.
Zero executions is suspicious and would be marked by “#####”; the tag
“–” stands for lines without executable code.

Demo

See the package “cgi_decode.zip” on the course page for instructions
on how to do this yourself.

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testingLCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

Statement testing is a simple criterion for assessing the adequacy of a
test suite – but there are many more such criteria.

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testing

LCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

As an example, consider branch testing, which is a criterion that
subsumes statement testing. In other words, if the branch testing
criterion is satisfied by a pair ⟨program, test suite⟩, so is the statement
testing criterion for the same pair.

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

✔

✔

✔

✔

✔
✔

✔

✔

✔ ✔

0

25,25

50,5

75,75

101

Coverage

100

“+%0d+%4j”

Why is branch testing useful? Assume block F were missing (= a
defect). Then, we could achieve 100% statement coverage without
ever triggering the defect.

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“+%0d+%4j”

If we focus on whether branches have been taken, though, we get a
different picture.

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

0

25

50

75

100

Coverage

87

“+%0d+%4j”

✔

✔✔

✔

✔ ✔

✔

Here, we’d find that the test case executes only 7 out of 8 branches, or
87%.

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“+%0d+%4j”

✔

✔✔

✔

✔ ✔

✔

“abc”

✔

0

25

50

75

100

Coverage

87

0

25

50

75

100

Coverage

100

With another test case, we can cover this remaining branch – and find
the defect.

Branch Testing

• Adequacy criterion: each branch in the
CFG must be executed at least once

• Coverage: # executed branches 
 # branches

• Subsumes statement testing criterion 
because traversing all edges implies traversing all nodes

• Most widely used criterion in industry

(from Pezze + Young, “Software Testing and
Analysis”, Chapter 12)

Condition Testing

• Consider the defect  
(digit_high == 1 || digit_low == -1)  
 // should be -1

• Branch adequacy criterion can be achieved
by changing only digit_low  
i.e., the defective sub-expression may never determine the result

• Faulty sub-condition is never tested 
although we tested both outcomes of the branch

Condition Testing

• Key idea: also cover individual conditions in
compound boolean expression 
e.g., both parts of digit_high == 1 || digit_low == -1

Condition Testing

• Adequacy criterion: each basic condition
must be evaluated at least once

• Coverage:  
truth values taken by all basic conditions 

 2 * # basic conditions

• Example:  
100% basic condition coverage 

“test+%9k%k9”

but only 87% branch coverage

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testing

LCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

The basic condition criterion is not comparable with branch or
statement coverage criteria – neither implies (subsumes) the other.

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testingLCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

The idea here is to cover both branch and condition testing – by
covering all conditions and all decisions. That is, every sub-condition
must be true and false, but the entire condition just as well.

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testingLCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

Another idea might be simply to test all possible combinations. This is
called compound condition testing.

• Assume (((a ∨ b) ∧ c) ∨ d) ∧ e)

• We need 13 tests 
to cover all possible  
combinations

• In general case, we  
get a combinatorial  
explosion

Compound Conditions

Condition Testing 223

not need to be combined with both values False and True for the second condition. The
number of test cases required for compound condition adequacy can, in principle, grow
exponentially with the number of basic conditions in a decision (all 2N combinations
of N basic conditions), which would make compound condition coverage impractical
for programs with very complex conditions. Short circuit evaluation is often effective
in reducing this to a more manageable number, but not in every case. The number of
test cases required to achieve compound condition coverage even for expressions built
from N basic conditions combined only with short-circuit boolean operators like the
&& and || of C and Java can still be exponential in the worst case.

Consider the number of cases required for compound condition coverage of the
following two boolean expressions, each with five basic conditions. For the expression
a && b && c && d && e, compound condition coverage requires:

Test Case a b c d e
(1) True True True True True
(2) True True True True False
(3) True True True False –
(4) True True False – –
(5) True False – – –
(6) False – – – –

For the expression (((a || b) && c) || d) && e, however, compound
condition adequacy requires many more combinations:

Test Case a b c d e
(1) True – True – True
(2) False True True – True
(3) True – False True True
(4) False True False True True
(5) False False – True True
(6) True – True – False
(7) False True True – False
(8) True – False True False
(9) False True False True False

(10) False False – True False
(11) True – False False –
(12) False True False False –
(13) False False – False –

An alternative approach that can be satisfied with the same number of test cases
for boolean expressions of a given length regardless of short-circuit evaluation is the
modified condition/decision coverage or MCDC, also known as the modified condition
adequacy criterion. The modified condition/decision criterion requires that each � modified condition/decision cov-

erage (MCDC)basic condition be shown to independently affect the outcome of each decision. That
is, for each basic condition C, there are two test cases in which the truth values of all
evaluated conditions except C are the same, and the compound condition as a whole
evaluates to True for one of those test cases and False for the other. The modified
condition adequacy criterion can be satisfied with N +1 test cases, making it an attrac-

Draft version produced August 1, 2006

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testingLCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

The combinatorial explosion is the reason why compound condition
testing is a theoretical, rather than a practical criterion.

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testingLCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

A possible compromise is MCDC or Modified Condition/Decision
Coverage testing.

• Key idea: Test important combinations of
conditions, avoiding exponential blowup

• A combination is “important” if each basic
condition is shown to independently affect
the outcome of each decision

MCDC Testing
Modified Condition Decision Coverage

• For each basic condition C, we need 
two test cases T1 and T2

• Values of all evaluated conditions except C
are the same

• Compound condition as a whole evaluates
to True for T1 and false for T2

• A good balance of thoroughness and test
size (and therefore widely used)

MCDC Testing
Modified Condition Decision Coverage

• Assume (((a ∨ b) ∧ c) ∨ d) ∧ e)

• We need six tests to cover MCDC
combinations

MCDC Testing
Modified Condition Decision Coverage

224 Structural Testing

tive compromise between number of required test cases and thoroughness of the test.
It is required by important quality standards in aviation, including RTCA/DO-178B,
“Software Considerations in Airborne Systems and Equipment Certification,” and its
European equivalent EUROCAE ED-12B.

Recall the expression (((a || b) && c) || d) && e, which required 13
different combinations of condition values for compound condition adequacy. For
modified condition/decision adequacy, only 6 combinations are required. Here they
have been numbered for easy comparison with the previous table:

a b c d e Decision
(1) True – True – True True
(2) False True True – True True
(3) True – False True True True
(6) True – True – False False

(11) True – False False – False
(13) False False – False – False

The values underlined in the table independently affect the outcome of the decision.
Note that the same test case can cover the values of several basic conditions. For
example, test case (1) covers value True for the basic conditions a, c and e. Note also
that this is not the only possible set of test cases to satisfy the criterion; a different
selection of boolean combinations could be equally effective.

12.5 Path Testing
Decision and condition adequacy criteria force consideration of individual program de-
cisions. Sometimes, though, a fault is revealed only through exercise of some sequence
of decisions, i.e., a particular path through the program. It is simple (but impractical,
as we will see) to define a coverage criterion based on complete paths rather than indi-
vidual program decisions� path adequacy criterion

A test suite T for a program P satisfies the path adequacy criterion iff, for each path
p of P, there exists at least one test case in T that causes the execution of p.

This is equivalent to stating that every path in the control flow graph model of
program P is exercised by a test case in T .� path coverage

The path coverage CPath of T for P is the fraction of paths of program P executed
by at least one test case in T .

CPath =
number of executed paths

number of paths

Unfortunately, the number of paths in a program with loops is unbounded, so this
criterion cannot be satisfied for any but the most trivial programs. For program with
loops, the denominator in the computation of the path coverage becomes infinite, and
thus path coverage is zero no matter how many test cases are executed.

Draft version produced August 1, 2006

Underlined values independently affect the outcome of the decision.
Note that the same test case can cover the values of several basic
conditions. For
example, test case (1) covers value True for the basic conditions a, c
and e. Note also that this is not the only possible set of test cases to
satisfy the criterion; a different selection of boolean combinations could
be equally effective.

Path Testing
beyond individual branches

• Key idea: explore
sequences of
branches in
control flow

• Many more paths
than branches 
calls for compromises

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testingLCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testingLCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

For one thing, there is general path testing, i.e. covering all paths in the
program. Since loops are unbounded, this is generally not feasible and
therefore just a theoretical criterion. Its advantage, though, is that it
subsumes almost all criteria.

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testing

LCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

Boundary interior testing groups together paths that differ only in the
subpath they follow when repeating the body of a loop. In other words,
we follow each path in the CFG up to the first repeated node.

Boundary Interior Adequacy
for cgi_decode

Original CFG Paths to be covered

The graph at the right shows the paths that must be covered in the
control flow graph at the left, using the “boundary interior” adequacy
criiterion.

Issues

• The number of paths may still
grow exponentially 
In this example, there are 24 = 16 paths

• Forcing paths may be infeasible  
or even impossible if conditions are not
independent

c1?

s1

c2?

s2

c3?

s3

c4?

s4

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testing

LCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

Therefore, boundary interior testing belongs more to the “theoretical”
criteria.

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testingLCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

Another alternative is loop boundary testing which forces constraints on
how loops are to be executed. This is a practical criterion.

Loop Boundary Adequacy

A test suite satisfies the loop boundary adequacy
criterion if for every loop L:

• There is a test case which iterates L zero times

• There is a test case which iterates L once

• There is a test case which iterates L more than once

Typically combined with other adequacy criteria 
such as MCDC

This is a variant of the boundary/interior criterion that treats loop
boundaries similarly but is less stringent with respect to other
differences among paths

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

0

1

≥ 2≥ 2
1

0

A

B

C

D E

GF

H I

L
M

“”
“a”

“abc”

With these three test cases, we obtain loop boundary adequacy for the
cgi_decode main loop.

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testingLCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

Another alternative is loop boundary testing which forces constraints on
how loops are to be executed.

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testingLCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

LCSAJ is a generalization over branch and statement coverage.

LCSAJ Adequacy
Testing all paths up to a fixed length

• LCSAJ = Linear Code Sequence And Jump

• A LCSAJ is a sequential subpath in the CFG
starting and ending in a branch

LCSAJ length corresponds to

1 statement coverage

2 branch coverage

n coverage of n  
consecutive LCSAJs

∞ path coverage

Considering the exponential blowup in sequences of conditional
statements (even when not in loops), we might choose to consider only
sub-sequences of a given length. This is what LCSAJ gives us ---
essentially considering full path coverage of (short) sequences of
decisions.

Test
Criteria

Statement testing

Branch testing

Basic 
condition testing

MCDC testing

Compound 
condition testing

Path testing

Loop boundary 
testing

Branch and 
condition testingLCSAJ testing

Boundary 
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

And this is the summary of structural testing techniques.

Weyuker’s Hypothesis

The adequacy of a coverage criterion 
can only be intuitively defined.

Established by a number of studies done by E. Weyuker at AT&T. “Any
explicit relationship between coverage and error detection would mean
that we have a fixed distribution of errors over all statements and paths,
which is clearly not the case”.

Satisfying Criteria

Sometimes criteria may not be satisfiable:

• Statements may not be executed because of
defensive programming or code reuse

• Conditions may not be satisfiable because of
interdependent conditions

• Paths may not be executable because of
interdependent decisions

Satisfying Criteria

• Reaching specific code can be very hard!

• Even the best-designed, best-maintained
systems may contain unreachable code

• A large amount of unreachable code/paths/
conditions is a serious maintainability problem

• Solutions: allow coverage less than 100%,  
or require justification for exceptions

More Testing Criteria

• Object-oriented testing 
e,g,“Every transition in the object’s FSM must be covered” or  
“Every method pair in the object’s FSM must be covered”

• Interclass testing 
e.g, “Every interaction between two objects must be covered”

• Data flow testing 
e.g.,“Every definition-use pair of a variable must be covered”

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

definitions

uses

Data flow testing is based on the observation that computing the wrong
value leads to a failure only when that value is subsequently used.
A typical data flow testing criterion is therefore that the tests must
exercise every pair (definition, uses) of a variable (such as “ok” in this
example).

Summary

